How Agents Learn Through Trial and Error: Reinforcement Learning

Discover how RL is applied in various industries, from robotics and gaming to healthcare and finance. Explore the key concepts, algorithms, and real-world examples to grasp the potential of this transformative technology.

How Agents Learn Through Trial and Error: Reinforcement Learning
Written by TechnoLynx Published on 24 Feb 2025

Introduction to Reinforcement Learning

Reinforcement learning (RL) is a key area of artificial intelligence. It focuses on training agents to make decisions through interactions with their environment. Unlike supervised learning, where models learn from labelled data, RL uses a trial-and-error approach to discover the best actions. The agent’s main goal is to maximise rewards over time, which makes RL valuable in complex environments where outcomes are not immediately clear.

The reinforcement learning problem revolves around how an agent moves through different states by taking actions that affect its surroundings. The agent gets feedback from the environment through rewards or penalties, known as the reward function. The challenge is to develop strategies that maximise long-term rewards. This involves finding a balance between exploring new actions and exploiting known ones that give high rewards.

Many real-world scenarios apply reinforcement learning algorithms. They help solve problems in fields like autonomous driving, robotics, financial modelling, and healthcare. These algorithms are designed to handle situations where making a series of decisions can lead to complex and often surprising outcomes. By addressing the RL problem, these algorithms create intelligent systems that can adapt, learn, and improve behaviour over time, showing the power and flexibility of RL in modern AI.

Core Concepts in Reinforcement Learning

Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a framework used to model decision-making where outcomes depend on both chance and the agent’s choices. MDPs are essential in RL because they provide a structured way to describe the environment in which an agent operates. MDPs are made up of states, actions, transition probabilities, and rewards.

  • States represent the different situations the agent can be in.

  • Actions are the choices available to the agent that affect the state.

  • Transition probabilities indicate the chance of moving from one state to another after an action.

Rewards are the gains or losses from moving between states, guiding the agent toward actions that offer the most benefit.

By modelling the environment as an MDP, RL problems can be approached systematically. This helps the agent learn optimal policies that maximise long-term rewards.

Read more: Symbolic AI vs Generative AI: How They Shape Technology

Bellman Equation

The Bellman equation is a crucial tool in RL. It calculates the value of different states or actions by estimating the expected cumulative reward an agent can achieve from that point onward. The equation is based on the idea that any optimal policy’s value function must follow a specific pattern, known as a recursive relationship.

The Bellman equation expresses the value of a state as the sum of the immediate reward from an action and the discounted value of the next state, accounting for all possible future actions. This approach helps the agent evaluate the long-term benefits of its actions, even in complex situations where outcomes are uncertain, as shown below.

The Bellman Equation. Source: Neptune.ai
The Bellman Equation. Source: Neptune.ai

In practice, the Bellman equation breaks down the RL problem into smaller parts. This makes it easier to calculate optimal strategies that maximise cumulative rewards, guiding the agent toward the best behaviour.

Methods and Techniques in Reinforcement Learning

Dynamic Programming

Dynamic programming (DP) is a method used in RL to solve MDPs by breaking down complex problems into simpler ones. DP requires a complete model of the environment, including transition probabilities and the reward function.

The main idea of DP is to use the Bellman equation repeatedly to update the value of each state until it reaches an optimal solution. This process helps the RL agent determine the best actions to take in each state.

However, dynamic programming can be computationally expensive and requires the entire state space to be known, which makes it less practical for large-scale or real-time applications.

Value Iteration

Value iteration is a key technique in value-based reinforcement learning and is one of the fundamental RL algorithms used to find optimal policies. It combines dynamic programming with an iterative approach to refine the value of states until they converge to an optimal solution.

In value iteration, the agent starts with an initial guess for the value function. It then repeatedly updates these values by selecting actions that maximise expected rewards. This method is effective when the state and action spaces are well-defined. The goal is to determine the optimal policy that guides the agent’s actions.

For instance, in a grid-world environment where an agent needs to reach a goal while avoiding obstacles, value iteration helps calculate the best path by considering the long-term rewards of each move. This process continues until the value function stabilises, ensuring that the agent’s policy is optimal.

Policy Iteration

Policy iteration is another important technique in policy-based reinforcement learning. It differs from value iteration in that it focuses directly on improving the policy rather than just refining the value function. Policy iteration alternates between two steps: policy evaluation and policy improvement.

  • Policy evaluation involves calculating the value function for a given policy. This represents the expected cumulative rewards for following that policy in every state.

  • Policy improvement then updates the policy by choosing actions that maximise the value function, leading to a new and better policy.

This cycle repeats until the policy converges to an optimal one, where no further improvements can be made.

Unlike value iteration, which works on value functions, policy iteration directly improves the policy. This makes it more suitable when the goal is to optimise specific actions rather than value estimates.

Read more: The Impact of Computer Vision on Real-Time Face Detection

Q-Learning

Q-learning is a popular model-free RL algorithm. It allows an agent to learn the value of taking specific actions in specific states without needing a model of the environment. Unlike dynamic programming and value iteration, which require knowledge of transition probabilities, Q-learning relies on direct interaction with the environment through trial and error. The following diagram shows the basic steps involved in Q-Learning:

Steps in Q-Learning. Source: Javatpoint
Steps in Q-Learning. Source: Javatpoint

The key concept in Q-learning is the Q-function. This function represents the expected cumulative reward for taking a particular action in a given state and following the optimal policy afterwards. The Q-function is updated using the Q-learning update rule:

Q-Learning Update Rule Formula. Source: Medium
Q-Learning Update Rule Formula. Source: Medium

In more complex environments, deep reinforcement learning can be used, where a neural network approximates the Q-function. This allows the agent to handle high-dimensional state spaces. This combination of Q-learning with neural networks is known as deep Q-learning. It has been successfully applied in various fields, such as game playing and robotic control.

A key aspect of Q-learning is balancing the exploration-exploitation trade-off. Exploration means trying new actions to discover their rewards, while exploitation involves choosing actions known to give high rewards. This balance is often managed using strategies like the epsilon-greedy method, where the agent occasionally explores random actions while mostly exploiting known high-reward actions.

For example, in a robotic navigation task, Q-learning would enable the robot to learn the best actions to take in different parts of its environment. The robot does this by interacting with the environment and updating its Q-function based on the feedback it receives. Over time, the robot develops an optimal policy for navigating the environment efficiently, even without a predefined model of that environment.

Types of Reinforcement Learning

Value-Based Reinforcement Learning

Value-based reinforcement learning focuses on optimising value functions. These functions estimate the expected cumulative reward an agent can achieve from a particular state or state-action pair. The goal is to find the optimal policy by evaluating and maximising these value functions.

A prime example of value-based RL is Q-learning. In Q-learning, the agent updates the Q-value (or action-value) for each state-action pair based on the rewards received from the environment. By focusing on value functions, value-based RL methods are effective in environments where the goal is to maximise long-term rewards by choosing the most valuable actions at each step.

Policy-Based Reinforcement Learning

Policy-based reinforcement learning directly optimises the policy, which is a mapping from states to actions, without needing to estimate value functions. The goal is to find the optimal policy that maximises long-term rewards by improving the policy itself rather than relying on value estimates.

One popular method in policy-based RL is the actor-critic approach. This method combines both policy-based and value-based strategies. The actor updates the policy based on feedback from the environment, while the critic evaluates the policy by estimating value functions. This combination allows the agent to efficiently explore the action spaces and optimise its decisions for long-term rewards. The actor-critic method balances the strengths of both value-based and policy-based methods, making it a powerful tool in reinforcement learning.

Actor-Critic Approach. Source: Medium
Actor-Critic Approach. Source: Medium

Model-Based Reinforcement Learning

Model-based reinforcement learning uses a model of the environment to predict the outcomes of actions and make decisions. This approach contrasts with model-free methods, where the agent learns purely from experience without knowledge of the environment’s dynamics.

In model-based RL, the agent uses the model to simulate possible future states and rewards. This allows it to plan and optimise its actions more effectively. This approach can lead to faster learning and better decision-making, especially in complex environments. However, the accuracy of the model is crucial, as inaccuracies can lead to suboptimal policies.

Applications of Reinforcement Learning in Industry

Reinforcement learning has broad applications across various industries. It significantly impacts how decisions are made, and processes are optimised. In robotics, RL trains robots to perform complex tasks, such as navigating environments or manipulating objects. The robots learn from interactions with the world, allowing them to adapt to new situations and improve their performance over time.

In finance, RL algorithms help optimise trading strategies by learning from market data. This enables more effective decision-making in dynamic financial markets. The ability to learn from historical data and adjust strategies in real time makes RL a valuable tool for managing investments and reducing risks.

In healthcare, deep reinforcement learning personalised treatment plans optimise resource allocation and improve patient outcomes. For example, RL agents can help manage chronic diseases by learning the most effective interventions based on patient data. This ultimately enhances the quality of care and reduces costs.

Read more: Deep Learning in Medical Computer Vision: How It Works

The adaptability and learning capabilities of RL make it a transformative technology, driving innovation and efficiency across diverse sectors.

What We Can Offer as TechnoLynx

At TechnoLynx, we specialise in providing advanced services that seamlessly integrate with RL. Our services include Computer Vision, Generative AI, and AR/VR/XR technologies. By using these capabilities, we empower organisations to harness the full potential of deep reinforcement learning and other RL techniques.

For instance, TechnoLynx can combine Computer Vision with RL to create intelligent systems for real-time object detection and autonomous navigation in industrial settings. Similarly, by integrating NLP with RL, we can develop more interactive and responsive customer service chatbots that continuously improve based on user interactions. In IoT edge computing, our services optimise device operations and energy management through RL-driven decision-making processes. These examples show how our consultancy and services can solve complex industry challenges, offering tailored solutions that enhance efficiency and innovation.

Conclusion

In this article, we explored the main concepts, methods, and types of reinforcement learning. We covered Markov Decision Processes, the Bellman equation, and various RL techniques like value iteration, policy iteration, and Q-learning. We also discussed the differences between value-based, policy-based, and model-based reinforcement learning.

Looking ahead, the future of RL holds exciting potential, especially in the development of RL algorithms that can learn from limited data and adapt to changing environments. However, challenges such as scalability and ethical considerations remain. As RL continues to evolve, it will play a crucial role in driving innovation across industries, from robotics to healthcare, paving the way for more intelligent and autonomous systems.

Continue reading: Generative AI is Driving Smarter Business Solutions

References

  • Guide, S. (2023, January 7). The Q in Q-learning: A Comprehensive Guide to this Powerful Reinforcement Learning Algorithm. udit. Retrieved September 1, 2024.

  • Javatpoint. (2023, October). Reinforcement Learning Tutorial. Javatpoint. Retrieved August, 2024.

  • Neptune.ai. (2023, August 25). Markov Decision Process in Reinforcement Learning: Everything You Need to Know. Neptune.ai. Retrieved September 2, 2024.

  • Singh, N. (2023, July 10). The Bellman Equation: Decoding Optimal Paths with State, Action, Reward, and Discount. Medium. Retrieved September 2, 2024.

  • Thorat, R. (2023, October 29). Actor-Critic method explained. A policy-gradient method, by Rohan Thorat. Medium. Retrieved September 2, 2024.

Top Biotechnology Innovations Driving Industry R&D

Top Biotechnology Innovations Driving Industry R&D

15/08/2025

Learn about the leading biotechnology innovations shaping research and development in the industry, from genetic engineering to tissue engineering.

AR and VR in Telecom: Practical Use Cases

AR and VR in Telecom: Practical Use Cases

14/08/2025

Learn how AR and VR transform telecom through real world use cases, immersive experience, and improved user experience across mobile devices and virtual environments.

AI-Enabled Medical Devices for Smarter Healthcare

AI-Enabled Medical Devices for Smarter Healthcare

13/08/2025

See how artificial intelligence enhances medical devices, deep learning, computer vision, and decision support for real-time healthcare applications.

3D Models Driving Advances in Modern Biotechnology

3D Models Driving Advances in Modern Biotechnology

12/08/2025

Learn how biotechnology and 3D models improve genetic engineering, tissue engineering, industrial processes, and human health applications.

Computer Vision Applications in Modern Telecommunications

Computer Vision Applications in Modern Telecommunications

11/08/2025

Learn how computer vision transforms telecommunications with object detection, OCR, real-time video analysis, and AI-powered systems for efficiency and accuracy.

Telecom Supply Chain Software for Smarter Operations

Telecom Supply Chain Software for Smarter Operations

8/08/2025

Learn how telecom supply chain software and solutions improve efficiency, reduce costs, and help supply chain managers deliver better products and services.

Enhancing Peripheral Vision in VR for Wider Awareness

Enhancing Peripheral Vision in VR for Wider Awareness

6/08/2025

Learn how improving peripheral vision in VR enhances field of view, supports immersive experiences, and aids users with tunnel vision or eye disease.

AI-Driven Opportunities for Smarter Problem Solving

AI-Driven Opportunities for Smarter Problem Solving

5/08/2025

AI-driven problem-solving opens new paths for complex issues. Learn how machine learning and real-time analysis enhance strategies.

10 Applications of Computer Vision in Autonomous Vehicles

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

How AI Is Transforming Wall Street Fast

How AI Is Transforming Wall Street Fast

1/08/2025

Discover how artificial intelligence and natural language processing with large language models, deep learning, neural networks, and real-time data are reshaping trading, analysis, and decision support on Wall Street.

How AI Transforms Communication: Key Benefits in Action

How AI Transforms Communication: Key Benefits in Action

31/07/2025

How AI transforms communication: body language, eye contact, natural languages. Top benefits explained. TechnoLynx guides real‑time communication with large language models.

Top UX Design Principles for Augmented Reality Development

Top UX Design Principles for Augmented Reality Development

30/07/2025

Learn key augmented reality UX design principles to improve visual design, interaction design, and user experience in AR apps and mobile experiences.

AI Meets Operations Research in Data Analytics

29/07/2025

AI in operations research blends data analytics and computer science to solve problems in supply chain, logistics, and optimisation for smarter, efficient systems.

Generative AI Security Risks and Best Practice Measures

28/07/2025

Generative AI security risks explained by TechnoLynx. Covers generative AI model vulnerabilities, mitigation steps, mitigation & best practices, training data risks, customer service use, learned models, and how to secure generative AI tools.

Best Lightweight Vision Models for Real‑World Use

25/07/2025

Discover efficient lightweight computer vision models that balance speed and accuracy for object detection, inventory management, optical character recognition and autonomous vehicles.

Image Recognition: Definition, Algorithms & Uses

24/07/2025

Discover how AI-powered image recognition works, from training data and algorithms to real-world uses in medical imaging, facial recognition, and computer vision applications.

AI in Cloud Computing: Boosting Power and Security

23/07/2025

Discover how artificial intelligence boosts cloud computing while cutting costs and improving cloud security on platforms.

AI, AR, and Computer Vision in Real Life

22/07/2025

Learn how computer vision, AI, and AR work together in real-world applications, from assembly lines to social media, using deep learning and object detection.

Real-Time Computer Vision for Live Streaming

21/07/2025

Understand how real-time computer vision transforms live streaming through object detection, OCR, deep learning models, and fast image processing.

3D Visual Computing in Modern Tech Systems

18/07/2025

Understand how 3D visual computing, 3D printing, and virtual reality transform digital experiences using real-time rendering, computer graphics, and realistic 3D models.

Creating AR Experiences with Computer Vision

17/07/2025

Learn how computer vision and AR combine through deep learning models, image processing, and AI to create real-world applications with real-time video.

Machine Learning and AI in Communication Systems

16/07/2025

Learn how AI and machine learning improve communication. From facial expressions to social media, discover practical applications in modern networks.

The Role of Visual Evidence in Aviation Compliance

15/07/2025

Learn how visual evidence supports audit trails in aviation. Ensure compliance across operations in the United States and stay ahead of aviation standards.

GDPR-Compliant Video Surveillance: Best Practices Today

14/07/2025

Learn best practices for GDPR-compliant video surveillance. Ensure personal data safety, meet EU rules, and protect your video security system.

Next-Gen Chatbots for Immersive Customer Interaction

11/07/2025

Learn how chatbots and immersive portals enhance customer interaction and customer experience in real time across multiple channels for better support.

Real-Time Edge Processing with GPU Acceleration

10/07/2025

Learn how GPU acceleration and mobile hardware enable real-time processing in edge devices, boosting AI and graphics performance at the edge.

AI Visual Computing Simplifies Airworthiness Certification

9/07/2025

Learn how visual computing and AI streamline airworthiness certification. Understand type design, production certificate, and condition for safe flight for airworthy aircraft.

Real-Time Data Analytics for Smarter Flight Paths

8/07/2025

See how real-time data analytics is improving flight paths, reducing emissions, and enhancing data-driven aviation decisions with video conferencing support.

AI-Powered Compliance for Aviation Standards

7/07/2025

Discover how AI streamlines automated aviation compliance with EASA, FAA, and GDPR standards—ensuring data protection, integrity, confidentiality, and aviation data privacy in the EU and United States.

AI Anomaly Detection for RF in Emergency Response

4/07/2025

Learn how AI-driven anomaly detection secures RF communications for real-time emergency response. Discover deep learning, time series data, RF anomaly detection, and satellite communications.

AI-Powered Video Surveillance for Incident Detection

3/07/2025

Learn how AI-powered video surveillance with incident detection, real-time alerts, high-resolution footage, GDPR-compliant CCTV, and cloud storage is reshaping security.

Artificial Intelligence on Air Traffic Control

24/06/2025

Learn how artificial intelligence improves air traffic control with neural network decision support, deep learning, and real-time data processing for safer skies.

5 Ways AI Helps Fuel Efficiency in Aviation

11/06/2025

Learn how AI improves fuel efficiency in aviation. From reducing fuel use to lowering emissions, see 5 real-world use cases helping the industry.

AI in Aviation: Boosting Flight Safety Standards

10/06/2025

Learn how AI is helping improve aviation safety. See how airlines in the United States use AI to monitor flights, predict problems, and support pilots.

IoT Cybersecurity: Safeguarding against Cyber Threats

6/06/2025

Explore how IoT cybersecurity fortifies defences against threats in smart devices, supply chains, and industrial systems using AI and cloud computing.

Large Language Models Transforming Telecommunications

5/06/2025

Discover how large language models are enhancing telecommunications through natural language processing, neural networks, and transformer models.

Real-Time AI and Streaming Data in Telecom

4/06/2025

Discover how real-time AI and streaming data are transforming the telecommunications industry, enabling smarter networks, improved services, and efficient operations.

AI in Aviation Maintenance: Smarter Skies Ahead

3/06/2025

Learn how AI is transforming aviation maintenance. From routine checks to predictive fixes, see how AI supports all types of maintenance activities.

AI-Powered Computer Vision Enhances Airport Safety

2/06/2025

Learn how AI-powered computer vision improves airport safety through object detection, tracking, and real-time analysis, ensuring secure and efficient operations.

Fundamentals of Computer Vision: A Beginner's Guide

30/05/2025

Learn the basics of computer vision, including object detection, convolutional neural networks, and real-time video analysis, and how they apply to real-world problems.

Computer Vision in Smart Video Surveillance powered by AI

29/05/2025

Learn how AI and computer vision improve video surveillance with object detection, real-time tracking, and remote access for enhanced security.

Generative AI Tools in Modern Video Game Creation

28/05/2025

Learn how generative AI, machine learning models, and neural networks transform content creation in video game development through real-time image generation, fine-tuning, and large language models.

Artificial Intelligence in Supply Chain Management

27/05/2025

Learn how artificial intelligence transforms supply chain management with real-time insights, cost reduction, and improved customer service.

Content-based image retrieval with Computer Vision

26/05/2025

Learn how content-based image retrieval uses computer vision, deep learning models, and feature extraction to find similar images in vast digital collections.

What is Feature Extraction for Computer Vision?

23/05/2025

Discover how feature extraction and image processing power computer vision tasks—from medical imaging and driving cars to social media filters and object tracking.

Machine Vision vs Computer Vision: Key Differences

22/05/2025

Learn the differences between machine vision and computer vision—hardware, software, and applications in automation, autonomous vehicles, and more.

Computer Vision in Self-Driving Cars: Key Applications

21/05/2025

Discover how computer vision and deep learning power self-driving cars—object detection, tracking, traffic sign recognition, and more.

Machine Learning and AI in Modern Computer Science

20/05/2025

Discover how computer science drives artificial intelligence and machine learning—from neural networks to NLP, computer vision, and real-world applications. Learn how TechnoLynx can guide your AI journey.

← Back to Blog Overview